

Jahresbericht 2010

Amt der BURGENLÄNDISCHEN LANDESREGIERUNG

Jahresbericht 2010

über die an den Luftgütemessstellen des Burgenländischen Luftgütemessnetzes gemessenen Immissionsdaten

Gemäß Messkonzeptverordnung zum Immissionsschutzgesetz-Luft (BGBI. II 263/04, §37)

Impressum:
Amt der BGLD. Landesregierung,
Abt.5 - Anlagenrecht, Umweltschutz und Verkehr
Hauptreferat III - Natur und Umweltschutz
Europaplatz 1, 7000 Eisenstadt

Redaktion und Graphische Gestaltung: Das Luftgüte Team

Die Immissionsmesswerte sind im Internet unter der Adresse

www.luft-bgld.at

oder im ORF-Teletext auf den Seiten

621 - 622

zu erfahren.

Kontaktmöglichkeiten:

e-mail: luftguete.bgld@luft-bgld.at

Tel.: **02682 / 600 – 2835**Fax.: **02682 / 67432**

Tonbandauskunft:

Die aktuellen Ozonwerte sind von April bis Oktober unter der Telefonnummer

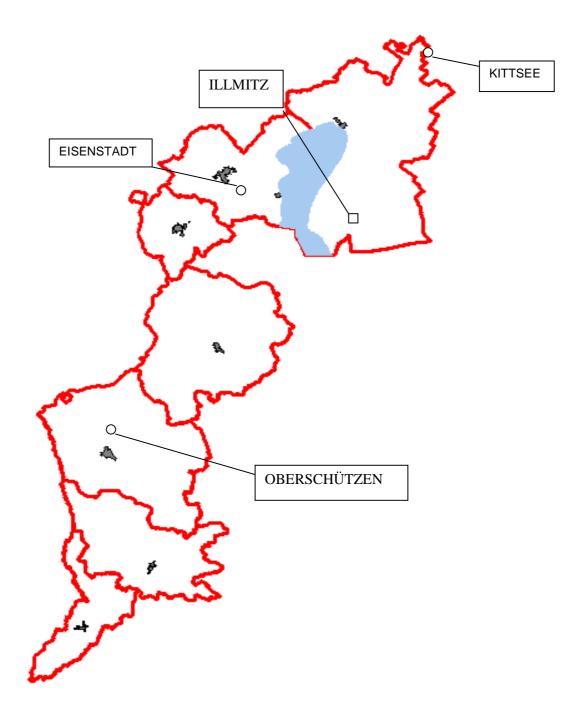
02682 / 600 - 2888

bei Überschreitung der Informationsschwelle unter der Telefonnummer

02682 / 600 - 2641

und bei Überschreitung der Alarmschwelle unter der Telefonnummer

02682 / 600 - 2642


INHALT

۱N	IHALT	2
	1 ÜBERBLICK ÜBER DAS BURGENLÄNDISCHE MESSNETZ:	4
2	Einleitung	5
	Die Luftgütemessung im Burgenland	5
3	Abkürzungen und Einheiten	6
	Luftschadstoffe	6 6
	Mittelwerte	
4	Grenz- und Zielwerte	8
	Ozongesetz (BGBL. 210/1992)	
5	Beschreibung der Messstellen	11
	Ausstattung der Messstellen Angaben zu den Messgeräten Meteorologische Messungen: Eisenstadt Oberschützen Kittsee	11 12 13 14
6	Qualitätssicherung	
	Beschreibung der Immissionssituation	
	Schwefeldioxid	20 21 22 22
8	Tabellen und Statistik	30
	Schwefeldioxid (µg/m³) Eisenstadt Oberschützen Kittsee Kohlenmonoxid (mg/m³)	30 31 32
	Eisenstadt	

Amt der Burgenländischen Landesregierung

Stickstoffdioxid (µg/m³)	34
Eisenstadt	34
Oberschützen	35
Kittsee	
PM10 (μg/m³)	37
Eisenstadt	
Oberschützen	38
Kittsee	
Ozon (µg/m³)	40
Eisenstadt	
Oberschützen	41
Kittsee	42
Temperaturverläufe (°C)	43
Eisenstadt	
Oberschützen	44
Kittsee	45

1 ÜBERBLICK ÜBER DAS BURGENLÄNDISCHE MESSNETZ:

- O Messstellen des BGLD. Luftgütemessnetzes
- ☐ Messstelle des UBA

2 Einleitung

Die Luftgütemessung im Burgenland

Im Jahr 1992 trat das Ozongesetz in Kraft, woraufhin im Burgenland ein Luftgütemessnetz mit der Zentrale im Landhaus in Eisenstadt und zwei fixe Stationen aufgebaut und 1993 in Betrieb genommen wurde. Die ersten Messungen beschränkten sich auf die Messung von Ozon in Eisenstadt und in Oberwart.

Eine Hintergrundmessstation in Illmitz, die vom Umweltbundesamt betrieben wird, bestand schon. Die Messdaten werden mittels GSM-Modem in die Zentrale übertragen und dort weiterverarbeitet.

Mit dem Inkrafttreten des Immissionsschutzgesetzes 1997 wurde das burgenländische Luftgütemessnetz weiter ausgebaut. Eine fixe Station in Kittsee wurde zusätzlich in Betrieb genommen, die bestehenden erweitert.

Außerdem wurden zwei mobile Luftmesscontainer angeschafft, die zu Vorerkundungsmessungen und Spezialmessungen herangezogen werden.

Außer den "klassischen Luftschadstoffen" (Schwefeldioxid, Stickstoffoxide, Ozon, Kohlenmonoxid und Staub) wird BTEX (Benzol, Toluol, Ethylbenzol und Xylole) und der Staubniederschlag an mehreren Standorten im Burgenland gemessen.

Auch Messungen bei speziellen Problemen der Luftverschmutzung (z.B. Ammoniakmessungen) werden von der Luftgütemesszentrale übernommen.

Über die Ergebnisse der Messungen werden Berichte verfasst, die via Internet veröffentlicht werden. Außerdem betreibt die Luftgütemesszentrale während des Sommerhalbjahres einen Tonbanddienst, wo die aktuellen Ozonwerte abgehört werden können. Ein Überschreiten der Ozoninformations- oder -alarmschwelle wird zusätzlich über den ORF verlautbart.

Die Bezirke Neusiedl, Eisenstadt, Mattersburg und Oberpullendorf gehören zum Ozonüberwachungsgebiet 1 - Nordostösterreich (Wien, Niederösterreich, nördliches und mittleres Burgenland),

Das Südburgenland zum Ozonüberwachungsgebiet 2 - Südostösterreich (südliches Burgenland und die Steiermark).

3 Abkürzungen und Einheiten

IG-L: Immissionsschutzgesetz – Luft

Luftschadstoffe

NO StickstoffmonoxidNO₂ StickstoffdioxidCO Kohlenstoffmonoxid

 O_3 Ozon

SO₂ Schwefeldioxid

BTEX Benzol, Toluol, Ethylbenzol, Xylole PM10 Feinstaub (Particulate Matter) $\,<\,10~\mu m$

SN Staubniederschlag > 30 µm

Meteorologie

T Temperatur

rF Relative Luftfeuchtigkeit WG Windgeschwindigkeit

WR Windrichtung

Einheiten

mg/m³ Milligramm pro Kubikmeter μg/m³ Mikrogramm pro Kubikmeter

mg/m²d Milligramm pro Quadratmeter und Tag

Umrechnungsfaktoren

zwischen Mischungsverhältnis, angegeben in ppb, und Konzentration in μg/m³ bei 1013 hPa und 20°C (Normbedingungen)

SO ₂	1 ppb = 2,6647 μg/m³	1 μg/m³ = 0,37528 ppb
NO	1 ppb = 1,2471 μg/m³	$1 \mu g/m^3 = 0,80186 ppb$
NO ₂	1 ppb = 1,9123 μ g/m ³	$1 \mu g/m^3 = 0,52293 ppb$
CO	1 ppb = 1,1640 μ g/m ³	1 μg/m³ = 0,85911 ppb
O ₃	1 ppb = 1,9954 μ g/m ³	1 μ g/m³ = 0,50115 ppb

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M5866, Nov. 1990)	
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)		
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2	
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4	
MW8	gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12	
MW_8	nicht gleitender Achtstundenmittelwert (4 Werte pro Tag: 0 - 8 Uhr, 8 - 16 Uhr, 12 – 20 Uhr, 16 – 24 Uhr)	12	
TMW	Tagesmittelwert	40	
MMW	Monatsmittelwert	22 gültige TMW, wobei aber alle gültigen HMW zur Bildung des MMW verwendet werden	
JMW	Jahresmittelwert	Es muss eine Verfügbarkeit von mindestens 90 % der Messwerte vorhanden sein	

4 Grenz- und Zielwerte

Ozongesetz (BGBL. 210/1992)

Mit der Novelle zum Ozongesetz vom 1.Juli 2003 wurden die Vorwarnstufe und die Warnstufen für Ozon aufgehoben und die Informationsschwelle und Alarmschwelle eingeführt (BGBI. Nr. 210/1992 zuletzt geändert durch das BGBI. I Nr. 34/2003 lt. EU-RL 2002/03/EG). Darüber hinaus wurden Zielwerte und langfristige Ziele zum Schutz des Menschen und der Vegetation festgelegt.

Informations- und Warnwerte

Informationsschwelle	180 μg/m³	Einstundenmittelwert	
Alarmschwelle	240 μg/m³	Einstundenmittelwert	

Zielwerte ab dem Jahr 2010 gem. Anl.2

Gesundheitsschutz	120 μg/m³	Höchster Achtstundenmittelwert des Tages, darf
	-	an höchstens 25 Tagen pro Kalenderjahr
		überschritten werden, gemittelt über 3 Jahre

Immissionsschutzgesetz (IG-L) (BGBI. 115/97 idgF)

Immissionsgrenzwerte gemäß IG-L, zum langfristigen Schutz der menschlichen Gesundheit

Schadstoff	Konzentration	Mittelungszeit	
SO ₂	120 μg/m³	Tagesmittelwert	
SO ₂	200 μg/m³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 μg/m³ gelten nicht als Überschreitung	
PM10	50 μg/m³	Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: bis 2009: 30, ab 2010: 25	
PM10	40 μg/m³	Jahresmittelwert	
CO	10 mg/m³	Gleitender Achtstundenmittelwert	
NO ₂	200 μg/m³	Halbstundenmittelwert	
30 μg/m³ Der Grenzv (2002: 55 μg/m³ beträgt 30 μ inkl. wird am 1.1 Toleranzmarge) Toleranzma 31.12.2009		Jahresmittelwert Der Grenzwert ist ab 1.1.2012 einzuhalten, die Toleranzmarge beträgt 30 μg/m³ bei Inkrafttreten dieses Gesetzes (d.h. 2001) und wird am 1.1. jedes Jahres bis 1.1.2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1.1.2005 bis 31.12.2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend von 1.1.2010 bis 31.12.2011.	
Benzol	5 μg/m³	Jahresmittelwert	

Schadstoff	Deposition	Mittelungszeit	
Staubniederschlag	210mg/m²d	Jahresmittelwert	
Blei im Staubniederschlag	0,100mg/m²d	Jahresmittelwert	
Cadmium im Staubniederschlag	0,200mg/m²d	Jahresmittelwert	

Immissionszielwert für Ozon gemäß IG-L , Anl.3 zum langfristigen Schutz der menschlichen Gesundheit,

Schadstoff	Konzentration	Mittelungszeit
O ₃	110 μg/m³	Achtstundenmittelwerte über die Zeiträume 0 bis 8 Uhr, 8 bis 16 Uhr, 16 bis 24 Uhr sowie 12 bis 20 Uhr

Alarmwerte gemäß IG-L, Anlage 4

Schadstoff	Konzentration	Mittelungszeit		
SO ₂	500 μg/m³	gleitender Dreistundenmittelwert		
NO ₂	400 μg/m³	gleitender Dreistundenmittelwert		

Zielwerte gemäß IG-L, Anlage 5

Schadstoff	Konzentration	Mittelungszeit		
PM10	50 μg/m³	Tagesmittelwert; bis zu 7 Tagesmittelwerte über 50 μg/m³ pro Kalenderjahr gelten nicht als Überschreitung		
PM10	20 μg/m³	Jahresmittelwert		
NO ₂	80 μg/m³	Tagesmittelwert		

5 Beschreibung der Messstellen

Ausstattung der Messstellen

Messstelle	Messgeräte					
	О3	SO ₂	PM ₁₀	NOx	СО	Meteorologie
Eisenstadt	TEI 49 C	APSA-360	FH62IR	APNA-360E	APMA-360	(1)
Oberwart	TEI 49 C	APSA-360	FH62IR/ DA-80H	APNA-350E		(1)
Kittsee	TEI 49 C	APSA-360	FH62IR	APNA-360E		(2)
Mobile Messstelle	TEI 49 C	APSA-360	FH62IR	APNA-360E	APMA-360	(2)

Angaben zu den Messgeräten

Messgerät	Nachweisgrenze	Messprinzip
SO ₂ (APSA-360)	2 μg/m³	UV-Fluoreszenz
NO, NO _x , NO ₂ (APNA-360E)	NO:0,4 μg/m ³	Chemilumineszenz
	NO ₂ : 1,7 µg/m³	
CO (APMA-360)	0,058mg/m ³	Infrarotabsorption
O ₃ (TEI 49 C)	2 μg/m ³	Ultraviolettabsorption
PM10	3 μg/m ³	Radiometrisch (Beta-Strahlen-Absorption)
PM10		gravimetrisch

Meteorologische Messungen:

Parameter	Gerät (1)	Gerät (2)
Lufttemperatur:	Kroneis 430A4	Rotronic MP400H
relative Feuchte:	Lambrecht 800L100	Rotronic MP 400H
Windrichtung	Kroneis 263 PPH	Kroneis 263 AA4
Windgeschwindigkeit		
Globalstrahlung	Schenk 8101	Schenk 8102

Eisenstadt

Die Station in Eisenstadt steht in der Laschoberstrasse, verkehrsnahe bei der stark befahrenen Kreuzung Neusiedlerstraße/Rusterstraße

Seehöhe: 160 m

Geographische Position: Länge 16,527° Breite 47,840°

Gemessen wird: PM10, O₃, NO, NO_x, NO₂, SO₂, CO, T, rF, WG, WR

Oberschützen

Die Messstation steht am Südrand von Oberschützen beim Bauhof. Sie ist eine Messstelle mit landwirtschaftlich genutzter Umgebung.

Seehöhe: 345 m

Geografische Position (WGS84): Länge 16,20788° Breite 47,33956°

Gemessen wird: PM10, O₃, NO, NO_x, NO₂, SO₂, T, rF, WG, WR

Kittsee

Die Messstation in Kittsee steht am Brunnenfeld Nord, nördlich vom Ort. Sie liegt nur wenige hundert Meter von der Staatsgrenze zu der Slowakei entfernt und im direkten Einzugsgebiet von Pressburg.

Seehöhe: 138m

Geografische Position: Länge 17,076° Breite 48,110°

Gemessen wird: PM10, O₃, NO, NO_x, NO₂, SO₂, T, rF, WG, WIR

Illmitz

Die Messstation in Illmitz liegt im Nahebereich der Biologischen Station Illmitz und wird als Hintergrundmessstelle vom Umweltbundesamt betrieben.

Seehöhe: 117m.

Geografische Position: Länge 16°45'56" Breite 47°46'10"

Gemessen wird: PM10, PM2,5, O₃, NO, NO_x, NO₂, SO₂, CO, BTX, T, rF, WG, WR,

NasseDepositionPartikuläres Sulfat, Nitrat, Ammonium, Salpetersäure,

Ammoniak

Die Daten von Illmitz werden in diesem Bericht nur oberflächlich behandelt. Die genaueren Werte sind dem Bericht des Umweltbundesamtes zu entnehmen

Standorte der mobilen Messstationen

Im Jahr 2010 wurden zwei mobile Messstationen für verschiedenste Messprojekte und Vorerkundungsmessungen betrieben.

Mobile 1					
Ort Beginn Ende					
Neusiedl/See	08.09.2009	15.02.2011			

Mobile 2					
Ort	Beginn	Ende			
Heiligenkreuz	17.7.2006	08.11.2010			
Bad Tatzmannsdorf	16.11.2010				

Gemessene Komponenten:

PM10 (kontinuierlich und gravimetrisch), O₃, NO, NOx, NO₂, SO₂, CO, BTEX, T, rF, WG, WR.

Mobilcontainer in Neusiedl/See, Blick auf das Outlet Center Parndorf

Mobilcontainer in Heiligenkreuz mit Blick auf das Lenzing Lyocell - werk

Die detaillierten Ergebnisse der mobilen Messstationen werden in gesonderten Berichten veröffentlicht.

6 Qualitätssicherung

In der Messkonzeptverordnung (BGBI. II Nr. 263/2004, i.d.g.F.) zum IG-L wird im § 11 für die Qualitätssicherung von Messdaten gefordert:

§ 11. (1) Jeder Messnetzbetreiber ist für die Qualität der in seinem Messnetz erhobenen Datengemäß den Datenqualitätszielen der Richtlinie 1999/30/EG, Anhang VIII, der Richtlinie 2000/69/EG, Anhang VI, und der Richtlinie 2004/107/EG, Anhang IV, verantwortlich. Dazu ist ein den Erfordernissen entsprechendes Qualitätsmanagementsystem aufzubauen und anzuwenden.

Der von Vertretern der Länder und des Bundes erarbeitetet Leitfaden zur Immissionsmessung nachdem Immissionsschutzgesetz-Luft enthält die Anforderungen an eine österreichweit einheitliche Vorgangsweise für die Immissionsmessung nach IG-L, mit der die harmonisierte Umsetzung der EN14211, EN14212, EN14625 und EN14626 sichergestellt werden soll.

Ob die erhobenen Messdaten diesen Qualitätszielen entsprechen, wird durch die Ermittlung der erweiterten kombinierten Messunsicherheit beschrieben.

Die erweiterte kombinierte Messunsicherheit wird für den Vergleich mit dem Datenqualitätsziel von 15% durch Bezug auf den jeweiligen Grenzwert in die relative erweiterte kombinierte Messunsicherheit umgerechnet.

Ozon (O₃)

Messtelle	Messunsicherheit HMW/MW1	Grenzwert eingehalten
Eisenstadt	7,8	Ja
Kittsee	9,0	Ja
Oberwart	7,9	Ja

Kohlenmonoxid (CO)

Messtelle	Messunsicherheit MW8	Grenzwert
		eingehalten
Eisenstadt	11,6	Ja

Schwefeldioxid (SO₂)

Messtelle	Messunsicherheit HMW/MW1	Grenzwert eingehalten
Eisenstadt	12,9	Ja
Kittsee	12,7	Ja
Oberwart	12,7	Ja

Stickstoffoxid (NO,NO₂)

Messtelle	Messunsicherheit HMW/MW1	Messunsicherheit JMW	Grenzwert eingehalten
Eisenstadt	14,5	10	Ja
Kittsee	13,5	8,7	Ja
Oberschützen	13,4	8,7	Ja

7 Beschreibung der Immissionssituation

Schwefeldioxid

Bei SO_2 nimmt Kittsee im Burgenland eine Sonderstellung ein. Während dieser Schadstoff in den anderen Stationen des Burgenlandes kein wirkliches Thema stellt, wurde erstmalig seit Jahren in Kittsee wieder eine Überschreitung des gesetzlichen Grenzwertes für den Halbstundenmittelwert registriert. In der zweiten April und ersten Mai hälfte wurden immer wieder Spitzenwerte gemessen. Am 11.5.2010 wurde ein HMW von $242\mu g/m^3$ und am 13.5.2010 von 212,6 $\mu g/m^3$ gemessen. Beachtenswert daran ist, dass zuerst die Stationen in Neusiedl und Eisenstadt ungewöhnlich hohe Werte registrierten und erst zeitversetzt in Kittsee der Überschreitungswert gemessen wurde. Die früher gemessenen Werte in Eisenstadt und Neusiedl lagen mit 80 und 120 deutlich niedriger. Aus diesem Grund wurde an die ZAMG eine Studie in Auftrag gegeben, um die tatsächliche Ursache dieser hohen Werte feststellen zu lassen. Das Ergebnis dieser Studie ist, dass sehr wohl Pressburg/ die Raffinerie in Pressburg der Verursacher der hohen Werte ist, aber auf Grund einer besonderen Luftströmung der SO Strom zuerst an Kittsee vorbei zog. Danach kam es nur noch vereinzelt zu Werten um 90 und $120\mu g/m^3$.

Die letzten Überschreitungen kam es in den Jahren 2003 und 2004 – bis 740µg/m³. Seit dem wurde keine mehr festgestellt.

Eine Überschreitung It. IG-L ist diese Überschreitung nicht, da das IG-L eine Überschreitungshäufigkeit von 3 HMW pro Tag, jedoch maximal 48 HMW im Kalenderjahr bis zu 350µg/m³ zulässt.

Der geringste HMW Max wurde in Oberschützen mit 29,1µg/m³ am 26.1.2010 gemessen.

Der höchste Tagesmittelwert wurde am 28.1.2010 mit 44µg/m³ in Kittsee gemessen. Gefolgt von Neusiedl und dann schon Illmitz mit 27,5µg/m³ am 23.1.2010. Die höheren Werte werden durchwegs – abgesehen von Kittsee – im Winter registriert. Der geringste Wert wurde in Heiligenkreuz mit 15,8µg/m³ festgestellt.

Kohlenstoffmonoxid

Im Burgenland wird in der Station in Eisenstadt und in den mobilen Stationen Kohlenstoffmonoxid gemessen. Der Schadstoff wies einen eindeutigen Jahresgang mit niedrigen Werten in den Sommermonaten von 0,3mg/m³ bis 0,5mg/m³ und höheren Werten in den Wintermonaten auf. Der höchste Achtstundenmittelwert wurde am 17.1.07 mit 2,4mg/m³ in Eisenstadt gemessen.

Dies entspricht 24% des gesetzlichen Grenzwertes, von einer Überschreitung war das Burgenland daher weit entfernt.

In Neusiedl/See wurde ein maximaler Achtstundenmittelwert von 1,0mg/m³ gemessen und in Heiligenkreuz 1,4mg/m³ (wobei hier nicht das Kalenderjahr als Bezug genommen wurde, sondern das letzte ganze Jahr).

Gegenüber den Vorjahren lagen die Werte in Eisenstadt im Trend der letzten Jahre, ab Dezember wurden höhere Werte aufgrund der meteorologischen Situation gemessen. In Neusiedl/See gab es keinen Dezember anstieg, was auf die höheren Windgeschwindigkeiten und die damit verbundene bessere Durchmischung zurückzuführen ist. In Heiligenkreuz waren die Werte etwas höher als im vorigen Jahr, aber deutlich niedriger als von 2006 bis 2008. Der Dezemberanstieg wurde auch in der Mobilen Station2 festgestellt, aber in Bad Tatzmannsdorf.

Stickstoffoxide

Die Jahresmittelwerte liegen zwischen 10,9µg/m³ in Illmlitz und 20,1µg/m³ in Eisenstadt und sind daher vom Grenzwert deutlich entfernt. Der Verkehrseinfluss macht sich hier deutlich, da die Werte in den Städten Eisenstadt, Neusiedl und auch Kittsee, wo der Einfluss von Pressburg messbar ist, deutlich die der anderen Stationen, die nicht verkehrsnahe situiert sind, teilweise um 100% übertreffen.

Im Burgenland werden üblicherweise die höchsten NO₂-werte in der verkehrsnahen Station in Eisenstadt registriert. Im Jahr 2010 war das beim Tagesmittelwert nicht der Fall. Da wurde am 4.2.2010 in Kittsee der höchste Wert mit 60,2μg/m³ festgestellt. Gefolgt von Eisenstadt mit 59,3μg/m³ am7.12.2010. Betrachtet man die NO2-werte der einzelnen Stationen, fällt auf, dass in Illmitz am 17.7.2010 ein unüblich hoher Wert von 37μg/m³ gemessen wurde. Sonst liegen die Werte von März bis September um 10μg/m³.

Die anderen Stationen weisen den meteorologisch bedingten typischen Jahresgang von höheren Werten im Winter und niedrigeren im Sommer ohne einzelne Ausreißer auf.

Bei den Kurzzeitwerten stellt sich folgendes Bild dar:

Der höchste Wert wurde an der Station in Eisenstadt mit 130,6µg/m³ am 22.2.2010 um 18:00 gemessen. Den niedrigsten HMW-Max kann Oberschützen mit 71,6µg/m³ am 28.1.2010 ebenfalls um 18:00 verbuchen.

Deutlich erkennt man hier den Humaneinfluss – bei den Stationen Kittsee und Neusiedl ist kaum ein Jahresgang zu erkennen, es gibt auch im Sommer immer wieder Perioden mit den selben hohen Werten wie im Winter. In Eisenstadt gibt es zwar einen Jahresgang, aber nicht sehr ausgeprägt (zusätzlicher Einfluss der Heizungen im Winter). In den beiden südlichen Stationen sind die Werte generell viel niedriger und weisen einen eindeutigen Jahresgang mit niedrigeren Werten im Sommer auf.

In Bezug auf die gesetzlichen Grenzwerte liegt das Burgenland bei den Maximalwerten bei ca. 65% - 75%.

Im Vergleich zu dem Vorjahr liegt das Jahr 2010 etwas höher, was vermutlich hauptsächlich auf die geänderte meteorologische Situation zurückzuführen ist.

PM10

Im Jahr 2010 lagen die Werte für Feinstaub im Vergleich zu den Vorjahren meteorologisch bedingt wieder höher.

Der Tagesmittelwert von 50µg/m³ wurde in Eisenstadt 29mal überschritten, in Kittsee 28mal, in Oberschützen 24mal und in Illmitz sogar 37mal. Damit lag in Eisenstadt und Kittsee eine Überschreitung It. IG-L und in Illmitz sogar eine Überschreitung It. EU-Richtlinie vor. Auch an den mobilen Messstationen wurden hohe Werte registriert: in Neusiedl/See wurde der TMW 35mal und in Heiligenkreuz 19mal überschritten.

Der höchste Wert im Burgenland wurde in Kittsee mit 116µg/m³ am 28.1.10 gemessen. Aber auch an fast allen anderen Stationen wurde zumindest einmal der Grenzwert um das Doppelte überschritten.

Besonders lang andauernde Feinstaubperioden auf Grund der Wetterlage waren Ende Jänner bis zweite Hälfte Feber und Ende Dezember.

In der Zeit von April bis Ende September wurde kein Wert über 50µg/m³ gemessen.

Der Jahresmittelwert lag mit 22-25µg/m³ bei knapp über 50% des Grenzwertes und ist trotz der deutlich höheren Anzahl an Überschreitungstagen gegenüber den letzten Jahren nahezu gleich bleibend.

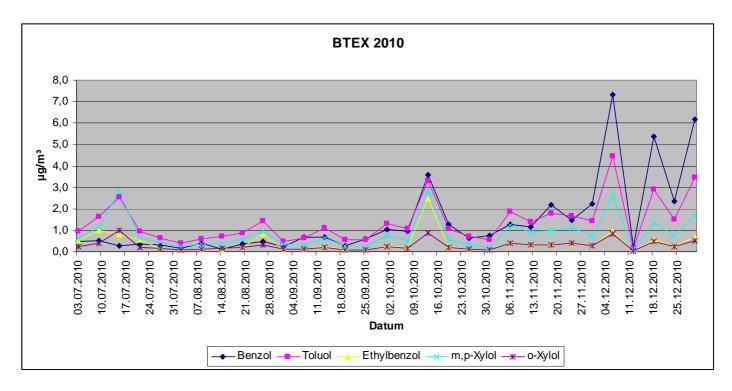
Benzol

Benzol ist einer der Stoffe, die unter der Bezeichnung BTEX zusammengefasst sind. BTEX sind organische Verbindungen aus der Gruppe der leichtflüchtigen aromatischen Kohlenwasserstoffe. Stellvertretend für diese Stoffgruppe stehen die Namen gebenden Verbindungen Benzol, Toluol, Ethylbenzol und Xylole.

Diese Kohlenwasserstoffe entstehen vorwiegend bei der Verdampfung von Lösungsmitteln und durch den KFZ-verkehr. Die meisten Verbindungen sind sehr reaktiv und stören das chemische Gleichgewicht der Atmosphäre. Unter dem Einfluss von Stickstoffoxiden und Sonnenlicht können hohe Konzentrationen von Ozon in bodennahen Schichten entstehen. Damit zählen sie zu den Ozonvorläufersubstanzen.

Von vielen dieser Substanzen gehen erhebliche Gefahren für die Gesundheit aus, manche sind äußerst giftig, andere haben krebserregende Wirkung.

Die Konzentrationen von BTEX werden mittels maschinell besaugter Aktivkohleröhrchen und anschließender Laboranalytik ermittelt. Die Probenahme erfolgt alle sechs Tage, es wird immer 24 Stunden (00:00 – 24:00 Uhr) besaugt.


Im Burgenland wird jeweils alternierend ein Jahr in einer Station die Schadstoffgruppe BTEX überprüft, 2010 wurde Eisenstadt das 3. Mal beprobt. Die früheren Daten stammen aus 2003 und 2007.

Beginn der Messung war der 16.01.2010, die letzte Probe wurde am 30.12.2010 genommen.

Folgende Jahresmittelwerte wurden gemessen (µg/m³):

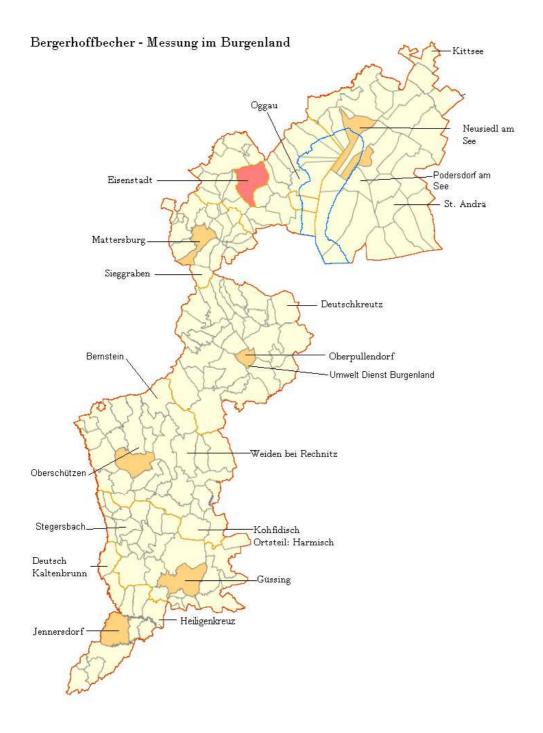
у от дотта от						
Benzol	Toluol	Ethylbenzol	m,p-Xylol	o-Xylol		
1,4	1,3	0,3	0,8	0,3		

Der Grenzwert wurde nicht überschritten.

Vergleichend mit den Messungen aus 2007 ist der Wert für Benzol gleich geblieben, 2003 war der Wert mit 1,7µg7m³ etwas höher.

Ozon

Im Jahr 2010 folgte die Ozonkonzentration im Wesentlichen dem typischen Jahresverlauf, wobei im Mai und Juni auf Grund des untypisch schlechten Wetters auch die Ozonwerte relativ niedrig waren. Trotzdem kam es wiederholt zu Überschreitungen der Ozoninformationsschwelle im Nordburgenland. In Eisenstadt kam es zweimal zu Werten über 180µg/m³, in Kittsee einmal, und das im Juni, in Illmitz wurde an einem und in Neusiedl an 2 Tagen die Informationsschwelle überschritten.


Die Überschreitung in Kittsee kann man auf den Einfluss von Pressburg zurückführen. Mit einem Maximalwert von 190µg/m³ waren die Werte von der Informationsschwelle deutlich entfernt. Im Südburgenland war der höchste Wert 166µg/m³. Damit blieb der Landessüden ohne Überschreitung von Grenzwerten.

Da das Nordburgenland mit Wien und Niederösterreich das Ozongebiet1 bildet und auch bei nicht burgenländischen Überschreitungen mitinformieren muss, war Im Ozongebiet 1 an 19 Tagen die Warnung der Ozonüberschreitung aufrecht.

Der Grenzwert zum langfristigen Schutz der menschlichen Gesundheit mit einem MW8 von 120µg/m³ wurde im Jahr 2010 bis zu 26 mal im Nordburgenland (Illmitz) und an 25 Tagen im Südburgenland (Oberschützen) überschritten, wobei die Überschreitungen von April bis August registriert wurden.

Im Vergleich zu den beiden Vorjahren mit keiner einzigen Überschreitung des MW1 im Burgenland war das Jahr 2010 deutlich höher von der Überschreitungshäufigkeit . Interessant ist, dass der Langzeitmittelwert von 8 Stunden diesen Trend nicht mit beschreibt. Mit maximal 37 (2009, Illmitz, nächstes war Oberschützen mit 21) bzw. 25 (2008, Kittsee) Überschreitungen des MW8 lag das Jahr 2010 gleichauf,

Deposition (Staubniederschlag)

Probenahmestelle

Jahresmittelwert (mg/m²d)

1	Eisenstadt	0,052
2	Oggau	0,106
3	Neusiedl/See	0,122
4	St. Andrä Bushaltestelle	0,931
5	St. Andrä Kirche	0,085
6	Kittsee	0,086
7	Podersdorf	0,046
8	Mattersburg	0,191
9	Sieggraben	0,097
10	Deutschkreuz	0,135
11	Oberpullendorf	0,115
12	UDB	0,176
13	Bernstein	0,127
14	Oberschützen	0,083
15	Weiden/Rechnitz	0,068
16	Harmisch	0,053
17	Deutsch Kaltenbrunn	0,089
18	Güssing Schule	0,074
19	Güssing Straße	0,227
20	Heiligenkreuz	0,100
21	Jennersdorf	0,165
22	Stegersbach	0,093
	Deponie Nord, Föllig	0,182

Tabelle Lage der Depositionsprobenahmestellen und die gemessenen Jahresmittelwerte (mg/m²d) im Jahr 2010

Die Messung Deponie Nord, Föllig wird vom Burgenländischen Müllverband durchgeführt

Die Messungen des Staubniederschlages nach Bergerhoff erfolgt an 22 vom Amt der Burgenländischen Landesregierung definierten Messplätzen, die über das gesamte Burgenland verteilt sind. Die Probenahmestellen sind so ausgewählt, dass sowohl gering belastete Gebiete als auch höher belastete Gebiete erfasst werden.

Die Bestimmung des Staubniederschlages erfolgt nach VDI 2119/2 "Messung partikelförmiger Niederschläge; Bestimmung des Staubniederschlages mit Auffanggefäßen aus Glas (Bergerhoffverfahren) oder Kunststoff." Dabei wird der atmosphärische Stoffeintrag durch Exposition von Auffanggefäßen aus Plastik erfasst und nach einer Expositionsdauer von 30 Tagen gravimetrisch bestimmt.

Der Grenzwert, gemessen als Jahresmittelwert (JMW) für diesen Luftschadstoff ist im IG-L, Anlage 2 mit 210mg/m²d angegeben.

Entsprechend den unterschiedlichen Depositionsprobenahmeorten sind auch die Werte im Burgenland sehr unterschiedlich.

Wie auch schon in den Jahren davor wurde an drei burgenländischen Messstellen der Grenzwert It. IG-L überschritten. Dies war in Güssing, straßennahe und in St. Andrä der Fall. Die Überschreitung in Güssing ist mit dem starken Verkehr auf der Durchzugsstraße erklärbar, die Werte der anderen Probenahmestellen in Güssing, die für die Wohngebiete repräsentativ sind, liegen deutlich darunter.

In St.Andrä am Zicksee wird seit dem Jahr 2005 der Luftschadstoff "Staubniederschlag (Deposition)" im Bereich der Hauptstraße gemessen. Mit einem JMW von 0,261mg/m²*d wurde bereits im Jahr 2005 der Grenzwert überschritten. Da eine plausible Erklärung für diese Überschreitung nicht offensichtlich war, wurden zwei zusätzliche Messpunkte in St. Andrä ausgewählt und dort Staubniederschlag gemessen, um die Repräsentativität des ersten Messpunktes zu überprüfen. Die zusätzlichen Messstellen liegen westlich und nordöstlich der ersten.

Während der nächsten beiden Jahre (2006 und 2007) wurde im Bereich des ersten Messpunktes die Straße erneuert und ein Kreisverkehr errichtet. Aufgrund dieser massiven Bautätigkeit sind die Werte dieser Jahre zu verwerfen. Die beiden anderen Messpunkte zeigten keine Überschreitungen.

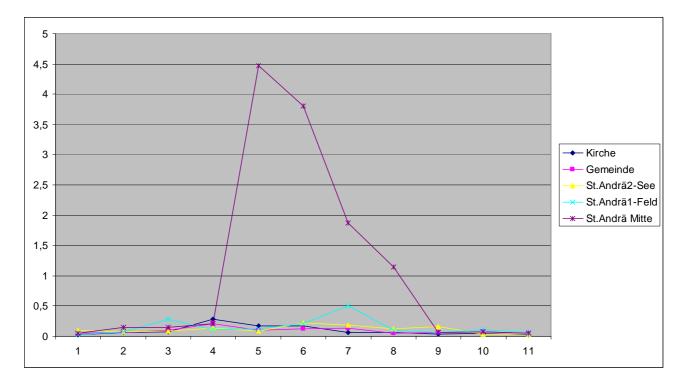
Um genauere Daten über die meteorologische Situation und die Konzentrationsluftschadstoffe zu bekommen, wurde vom 10.07.2007 bis zum 27.05.2008 ein mobiler Luftgütemesscontainer in St. Andrä situiert. Es konnten in dieser Zeit keinerlei Überschreitungen der anderen Luftschadstoffe oder sonstige Auffälligkeiten festgestellt werden.

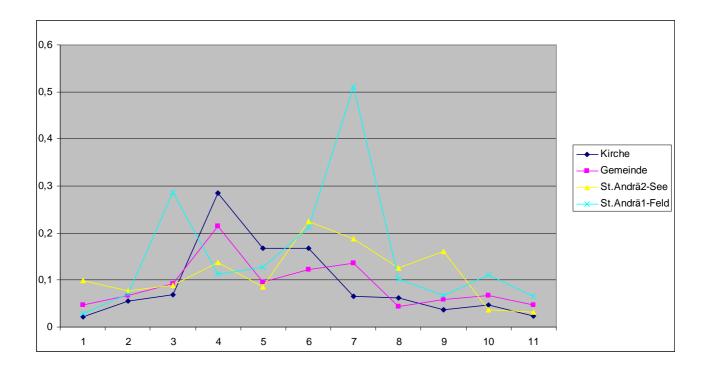
Um analytische Daten über die Beschaffenheit des Staubniederschlags zu bekommen, wurden einige Proben von der Technischen Universität, Abt. Analytische Chemie untersucht. Die Ergebnisse der Analysen ergaben keine Auffälligkeiten, es wurden nur silikatische Anteile gefunden.

Auffällig ist, dass der Staubniederschlag in St. Andrä einen ganz eindeutigen Jahresgang mit niedrigen Werten im Winterhalbjahr und höheren im Sommerhalbjahr hat.

Da im Jahr 2008 abermals der Grenzwert für Staubniederschlag am ersten Messpunkt überschritten wurde, an den beiden anderen aber nicht, ergibt sich der Schluss, dass der erste Messpunkt nicht als repräsentativ im Sinne des Messkonzeptes, Anlage 2: Großräumige und lokale Standortkriterien "...eine Probenahmestelle so gelegen sein sollte, dass sie für die Luftqualität in einem umgebenden Bereich von ... mehreren Quadratkilometern ... repräsentativ ist", zu erachten ist. Die Überschreitung des Grenzwerts an diesem Messpunkt ist daher nicht gem. IG-L zu behandeln, eine Statuserhebung ist nicht erforderlich.

Es handelt sich bei der ersten Messstelle in St. Andrä offensichtlich um eine kleinräumige Störung der Luftqualität, die gesondert zu betrachten ist.

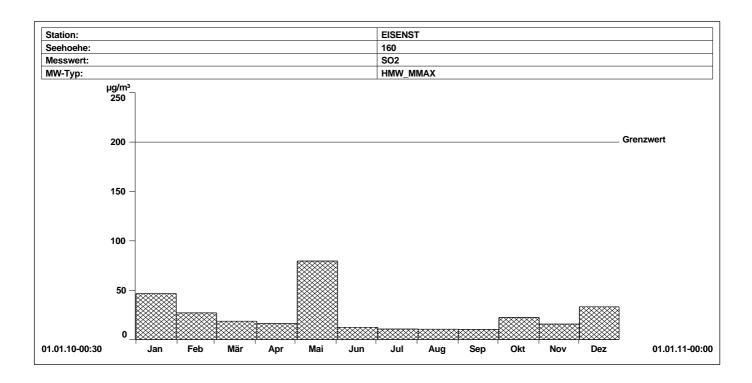

Eine repräsentative Probenahmestelle für St. Andrä wird erkundet.


Der hohe Wert in St. Andrä ist nicht eindeutig nachvollziehbar. Es wurden daher zwei zusätzliche Bergerhoffbecher am Rand von St. Andrä aufgestellt, um abzuklären, ob es sich

um ein lokales Problem oder ein großflächiges handelt. Ebenso wurde die TU-Wien mit der Analytik von einigen Proben beauftragt, um die Herkunft dieser Staubniederschlagsbelastung zu ergründen.

Vergleich der Staubniederschlagswerte in St. Andrä

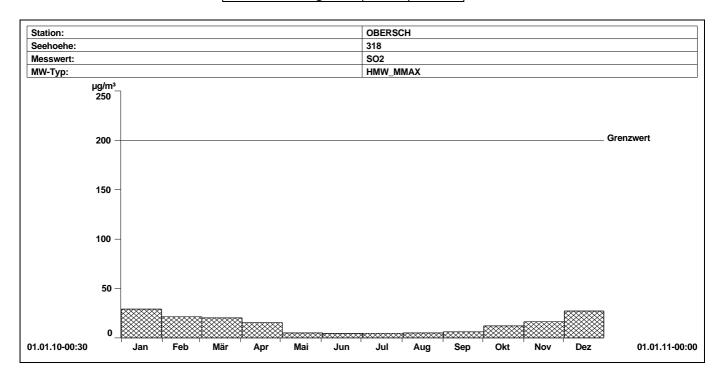
				St.Andrä2-	St.Andrä1-	St.Andrä
Zeit von	bis	Kirche	Gemeinde	See	Feld	Mitte
11.02.2010	10.03.2010	0,0222	0,0476	0,0995	0,0283	0,0495
10.03.2010	08.04.2010	0,0558	0,0667	0,0768	0,0702	0,148
08.04.2010	05.05.2010	0,0693	0,0924	0,0887	0,2858	0,1462
05.05.2010	08.06.2010	0,2842	0,2142	0,1367	0,1116	0,2146
08.06.2010	30.06.2010	0,1678	0,0961	0,0862	0,1279	4,4754
30.06.2010	27.07.2010	0,1674	0,1231	0,2249	0,2117	3,8004
27.07.2010	24.08.2010	0,0659	0,1351	0,1869	0,5107	1,8721
24.08.2010	22.09.2010	0,0615	0,0435	0,1256	0,1019	1,1459
22.09.2010	19.10.2010	0,0377	0,0594	0,1613	0,067	0,0556
19.10.2010	16.11.2010	0,0468	0,0678	0,0368	0,111	0,07
16.11.2010	14.12.2010	0,0236	0,0473	0,0318	0,0659	0,0532
Mittelwert		0,091	0,090	0,114	0,154	1,094


8 Tabellen und Statistik

Schwefeldioxid (µg/m³)

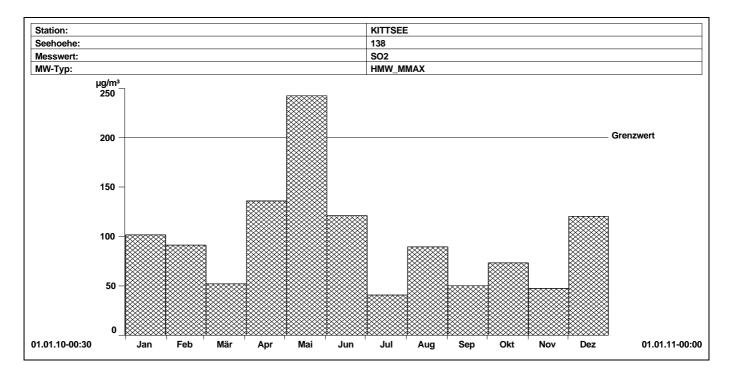
Eisenstadt

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW01	Max. MW3	98% MPZ
JAN	98 %	46.6	25.1	7.7	43.5	38.1	22.8
FEB	98 %	27.0	17.3	6.3	26.6	25.0	14.7
MÄR	97 %	18.6	9.2	2.4	17.9	16.9	6.1
APR	98 %	16.1	5.1	2.0	15.3	12.5	4.7
MAI	98 %	79.6	6.2	1.8	59.0	38.8	2.5
JUN	98 %	12.4	4.0	2.4	8.9	6.6	3.8
JUL	98 %	10.8	3.9	2.2	9.3	7.4	3.7
AUG	92 %	10.5	3.9	1.6	10.1	9.5	2.5
SEP	98 %	10.4	5.2	2.1	9.4	8.8	4.0
OKT	96 %	22.3	4.2	2.5	20.0	15.2	4.0
NOV	98 %	15.7	5.6	2.6	14.0	11.2	4.5
DEZ	97 %	33.2	15.3	3.1	32.3	30.2	4.9


Jahresmittelwert	2010	3.1
JPZ 98% TMW	2010	15.2
Jahresverfügbarkeit	2010	97 %
Überschreitung	2010	0

Oberschützen

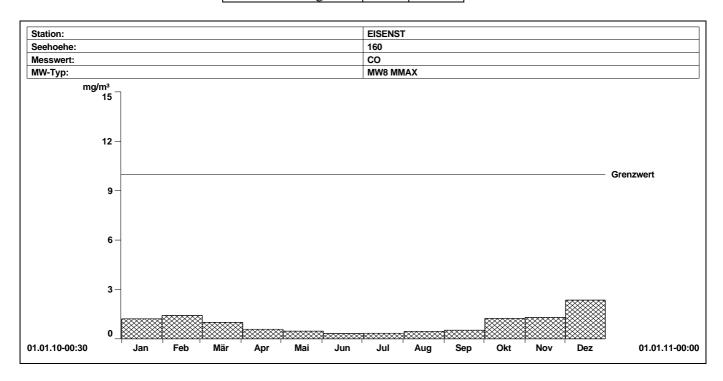
Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW01	Max. MW3	98% MPZ
JAN	98 %	29.1	18.0	4.0	28.9	28.2	10.7
FEB	98 %	21.4	10.4	3.7	20.5	19.2	10.2
MÄR	97 %	20.3	6.7	2.4	19.0	17.6	5.8
APR	98 %	15.5	3.7	2.0	11.4	9.7	3.4
MAI	98 %	5.1	1.8	1.3	5.0	4.0	1.7
JUN	98 %	4.6	2.0	1.4	4.4	4.1	1.9
JUL	97 %	4.7	2.7	1.1	4.1	3.8	1.9
AUG	98 %	5.1	1.7	1.0	4.5	3.7	1.4
SEP	98 %	6.2	2.8	1.2	5.7	5.6	2.3
OKT	96 %	12.1	3.6	1.6	6.6	6.0	2.2
NOV	98 %	16.3	3.5	1.7	14.8	12.7	3.4
DEZ	97 %	27.2	9.2	1.5	26.9	25.8	2.3


Jahresmittelwert	2010	1.9
JPZ 98% TMW	2010	9.2
Jahresverfügbarkeit	2010	97 %
Überschreitungen	2010	0

Kittsee

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW01	Max. MW3	98% MPZ
JAN	98 %	101.5	44.7	11.3	93.9	93.0	35.2
FEB	98 %	91.2	24.0	11.3	82.0	58.2	23.1
MÄR	97 %	52.1	12.1	3.3	41.1	31.9	9.3
APR	98 %	136.0	16.7	3.9	100.2	84.1	11.8
MAI	98 %	242.3	28.0	3.5	181.9	146.3	21.3
JUN	87 %	121.0	12.1	3.2	78.6	57.4	8.9
JUL	97 %	40.7	4.8	2.3	35.5	20.2	4.6
AUG	91 %	89.5	6.5	2.4	75.5	39.5	5.7
SEP	98 %	50.2	9.8	3.1	44.3	34.3	8.4
OKT	96 %	73.3	9.6	4.3	48.1	39.5	9.2
NOV	98 %	47.4	16.8	4.4	43.2	41.7	13.5
DEZ	97 %	120.3	23.7	7.3	93.2	74.7	20.2

Jahresmittelwert	2010	5.0
JPZ 98% TMW	2010	23.1
Jahresverfügbarkeit	2010	96 %
Überschreitungen	2010	2

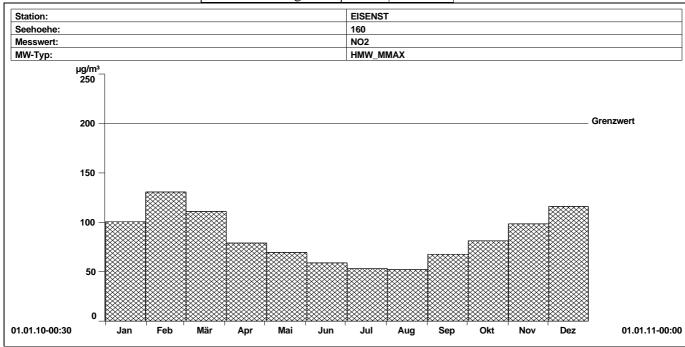


Kohlenmonoxid (mg/m³)

Eisenstadt

Monat	Verfügbarkeit	Max	Max TMW	MMW	Max MW01	Max MW3	Max MW8	98% MPZ
		HMW						
JAN	98 %	2.5	1.0	0.6	2.1	1.6	1.2	0.8
FEB	98 %	1.9	0.9	0.6	1.6	1.5	1.4	0.9
MÄR	97 %	1.4	0.5	0.3	1.2	1.2	1.0	0.5
APR	98 %	0.9	0.4	0.3	0.8	0.7	0.6	0.4
MAI	98 %	2.0	0.3	0.3	1.1	0.8	0.5	0.3
JUN	98 %	0.5	0.2	0.2	0.4	0.4	0.3	0.2
JUL	97 %	0.7	0.3	0.2	0.6	0.4	0.3	0.2
AUG	89 %	1.3	0.3	0.2	1.0	0.6	0.5	0.3
SEP	93 %	0.9	0.4	0.2	0.8	0.7	0.5	0.3
OKT	95 %	2.2	0.8	0.4	1.5	1.4	1.2	0.6
NOV	98 %	1.8	0.9	0.5	1.7	1.6	1.3	0.8
DEZ	97 %	2.9	1.6	0.7	2.9	2.8	2.4	1.6

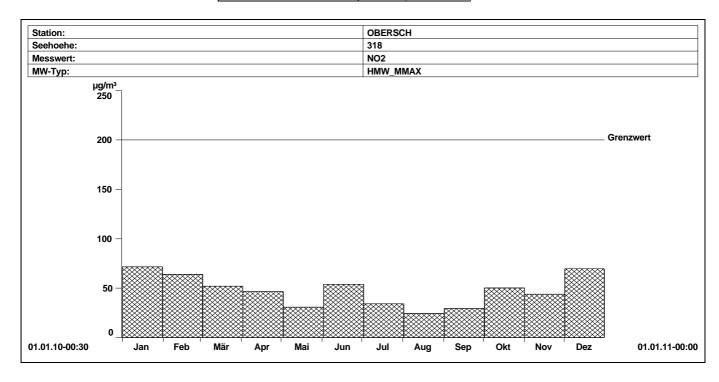
Jahresmittelwert	2010	0.4
JPZ 98% TMW	2010	1.1
Jahresverfügbarkeit	2010	96 %
Überschreitungen	2010	0



Stickstoffdioxid (µg/m³)

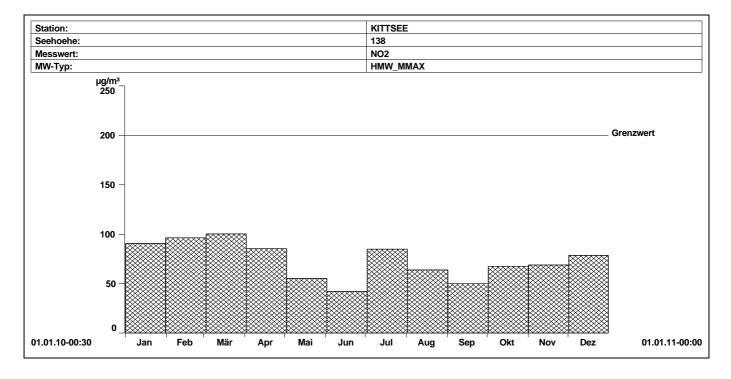
Eisenstadt

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW3	98% MPZ
JAN	98 %	100.5	51.8	26.3	81.1	44.2
FEB	98 %	130.7	54.6	27.0	114.1	51.0
MÄR	96 %	110.9	40.6	23.8	102.6	40.6
APR	98 %	79.1	30.4	21.2	68.1	29.8
MAI	98 %	69.5	26.2	14.5	50.0	23.3
JUN	98 %	58.9	23.4	13.0	50.9	21.0
JUL	95 %	53.2	22.0	14.4	43.1	21.2
AUG	92 %	52.1	23.8	14.2	41.1	21.1
SEP	98 %	67.7	26.3	16.1	52.9	25.6
OKT	95 %	81.3	34.6	19.3	66.3	32.6
NOV	98 %	98.5	34.9	22.4	76.5	33.0
DEZ	97 %	116.2	59.3	29.4	95.5	59.0


Jahresmittelwert	2010	20.1
JPZ 98% TMW	2010	51.0
Jahresverfügbarkeit	2010	97 %
Überschreitungen	2010	0

Oberschützen

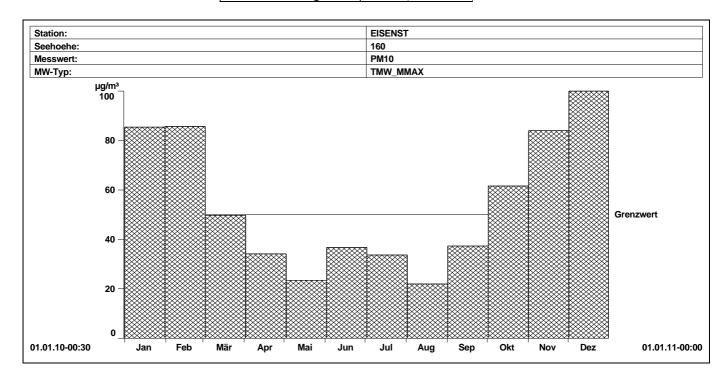
Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW3	98% MPZ
JAN	98 %	71.6	37.1	18.8	66.1	35.1
FEB	98 %	64.0	28.4	16.7	49.2	25.4
MÄR	97 %	51.9	18.9	10.9	37.7	17.7
APR	98 %	46.5	11.5	8.5	26.0	10.9
MAI	98 %	30.7	10.8	6.9	18.2	10.0
JUN	98 %	54.0	12.8	6.7	23.2	11.3
JUL	97 %	34.2	9.4	6.7	19.7	9.3
AUG	98 %	24.4	9.3	6.0	15.7	7.7
SEP	98 %	29.3	10.7	6.8	24.3	10.0
OKT	96 %	50.2	18.6	11.3	32.2	18.1
NOV	98 %	43.9	24.2	14.6	38.5	19.8
DEZ	97 %	69.6	32.6	22.3	56.9	31.8


Jahresmittelwert	2010	11.3
JPZ 98% TMW	2010	29.4
Jahresverfügbarkeit	2010	97 %
Überschreitungen	2010	0

Kittsee

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW3	98% MPZ
JAN	98 %	90.5	45.7	26.0	84.1	44.1
FEB	98 %	96.4	60.2	24.1	90.5	43.1
MÄR	97 %	100.2	31.0	15.9	77.8	30.7
APR	98 %	85.4	30.5	15.7	72.2	26.1
MAI	98 %	55.2	19.1	9.1	51.5	14.3
JUN	98 %	42.0	14.5	7.3	27.3	12.6
JUL	98 %	84.9	18.5	9.3	48.2	17.8
AUG	91 %	63.8	16.8	10.2	38.5	15.2
SEP	98 %	49.9	25.8	11.0	43.9	23.5
OKT	96 %	67.5	34.5	19.6	58.6	33.4
NOV	98 %	68.9	39.0	20.1	61.1	35.8
DEZ	98 %	78.6	49.6	25.4	73.9	49.4

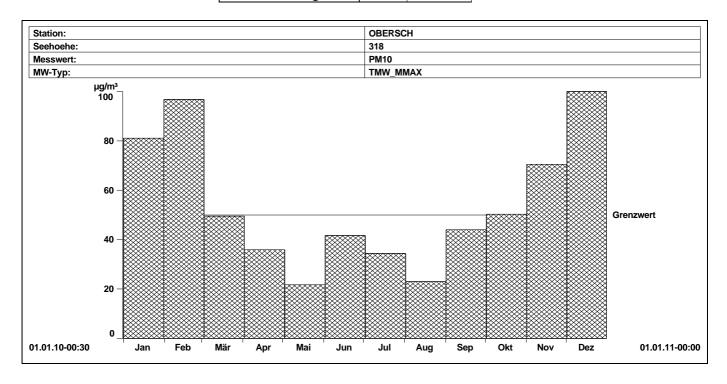
Jahresmittelwert	2010	16.1
JPZ 98% TMW	2010	43.1
Jahresverfügbarkeit	2010	97 %
Überschreitungen	2010	0



PM10 (μg/m³)

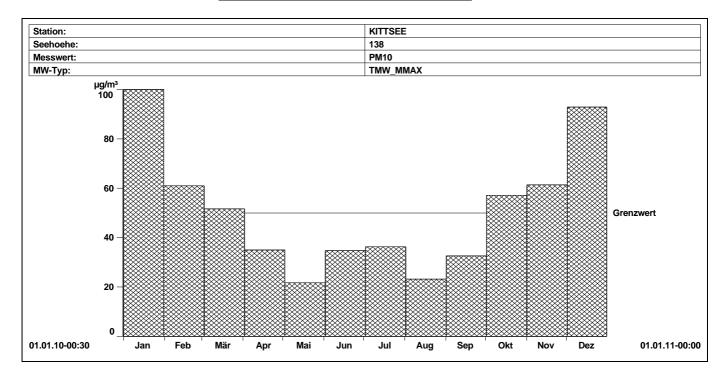
Eisenstadt

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	98% MPZ
JAN	100 %	148.8	85.5	38.2	74.5
FEB	99 %	130.7	85.7	38.1	66.5
MÄR	97 %	90.9	49.7	24.5	44.3
APR	98 %	60.9	34.2	21.4	32.4
MAI	94 %	72.2	23.4	14.5	23.0
JUN	98 %	70.2	36.7	18.2	33.1
JUL	98 %	52.5	33.7	19.3	33.2
AUG	93 %	42.8	22.0	14.5	21.6
SEP	98 %	58.9	37.3	16.1	30.9
OKT	91 %	155.9	61.6	30.9	59.5
NOV	94 %	139.5	84.0	28.4	76.3
DEZ	97 %	157.9	101.2	42.1	89.0


Jahresmittelwert	2010	25.5
JPZ 98% TMW	2010	78.6
Jahresverfügbarkeit	2010	96 %
Überschreitungen	2010	29

Oberschützen

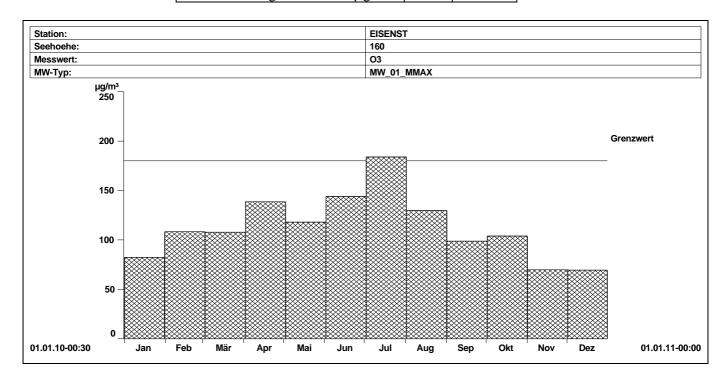
Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	98% MPZ
JAN	99 %	141.4	81.1	42.1	76.3
FEB	99 %	146.6	96.8	44.7	87.9
MÄR	96 %	122.0	49.5	22.3	46.6
APR	98 %	128.7	35.9	20.7	34.7
MAI	98 %	57.4	21.7	12.1	17.1
JUN	98 %	205.9	41.6	16.6	29.4
JUL	97 %	200.0	34.4	19.5	30.7
AUG	95 %	69.6	23.0	13.0	21.3
SEP	96 %	96.2	44.0	15.3	35.6
OKT	93 %	155.1	50.3	29.1	50.2
NOV	98 %	144.3	70.5	27.0	50.6
DEZ	97 %	171.3	103.6	36.1	83.0


Jahresmittelwert	2010	24.8
JPZ 98% TMW	2010	75.7
Jahresverfügbarkeit	2010	97 %
Überschreitungen	2010	24

Kittsee

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	98% MPZ
JAN	100 %	235.4	116.1	42.2	88.4
FEB	97 %	121.1	61.0	35.9	58.2
MÄR	96 %	85.2	51.7	23.0	47.1
APR	98 %	66.0	35.0	20.5	34.0
MAI	98 %	46.0	21.7	14.2	21.0
JUN	98 %	57.4	34.8	18.0	29.6
JUL	98 %	86.1	36.3	21.5	32.2
AUG	91 %	128.2	23.2	14.0	22.8
SEP	98 %	39.3	32.6	14.8	30.8
OKT	96 %	92.3	57.1	27.8	55.7
NOV	98 %	84.4	61.4	23.6	54.1
DEZ	97 %	142.2	92.9	36.7	78.7

Jahresmittelwert	2010	24.4
JPZ 98% TMW	2010	67.3
Jahresverfügbarkeit	2010	97 %
Überschreitungen	2010	28



Ozon (µg/m³)

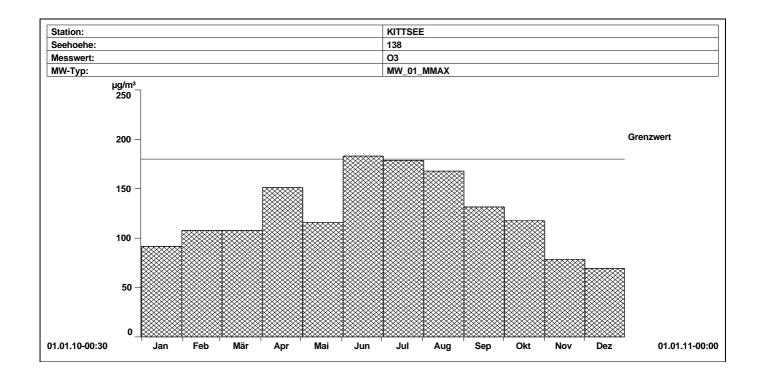
Eisenstadt

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW01	Max. MW8	98% MPZ
JAN	98 %	83.3	68.0	32.4	82.3	74.4	65.2
FEB	98 %	109.3	87.6	50.8	108.3	103.1	67.5
MÄR	97 %	110.2	75.4	57.3	107.8	98.1	75.2
APR	98 %	139.1	94.6	66.3	138.6	129.8	93.7
MAI	96 %	119.4	88.1	60.0	118.1	106.2	86.9
JUN	98 %	146.2	113.3	71.3	143.9	134.6	93.8
JUL	98 %	187.2	123.9	86.0	183.8	167.9	112.4
AUG	92 %	130.5	85.7	62.5	129.6	120.0	82.4
SEP	98 %	99.9	69.5	46.2	98.8	92.5	68.5
OKT	96 %	162.3	69.0	32.4	103.9	82.8	59.5
NOV	98 %	71.0	58.1	21.0	69.7	69.2	38.7
DEZ	98 %	70.6	60.2	25.9	69.5	66.3	56.8

Jahresmittelwert	2010	51.0
JPZ 98% TMW	2010	102.1
Jahresverfügbarkeit	2010	97 %
Überschreitungen über 180 µg/m³	2010	2
Überschreitungen über 240 µg/m³	2010	0

Oberschützen

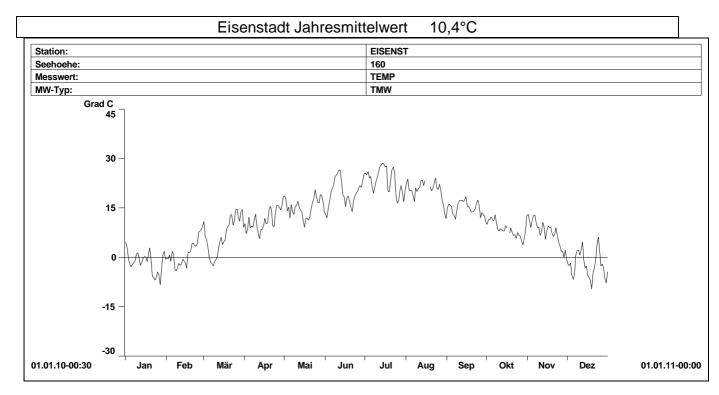
Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW01	Max. MW8	98% MPZ
JAN	97 %	91.0	76.3	36.8	90.3	84.8	69.5
FEB	98 %	124.1	92.3	56.1	122.4	111.6	81.6
MÄR	94 %	114.1	80.0	58.3	112.9	94.7	79.5
APR	95 %	151.5	88.5	71.5	150.2	136.5	87.4
MAI	98 %	123.0	99.6	66.6	122.2	113.8	96.5
JUN	98 %	163.8	108.2	72.4	163.3	155.5	91.5
JUL	97 %	169.1	111.7	85.5	166.5	158.8	103.4
AUG	95 %	124.8	85.3	57.7	124.4	117.9	77.8
SEP	97 %	104.3	73.4	45.0	104.2	98.0	63.3
OKT	87 %	96.4	62.9	34.9	95.6	86.7	55.3
NOV	74 %	74.9	42.0	24.2	74.1	59.0	42.0
DEZ	76 %	85.2	56.3	27.1	83.7	77.6	56.3


Jahresmittelwert	2010	54.2
JPZ 98% TMW	2010	97.2
Jahresverfügbarkeit	2010	92 %
Überschreitungen über 180 µg/m³	2010	0
Überschreitungen über 240 µg/m³	2010	0

Kittsee

Monat	Verfügbarkeit	Max. HMW	Max. TMW	MMW	Max. MW01	Max. MW8	98% MPZ
JAN	98 %	93.9	67.9	34.3	91.5	82.2	64.0
FEB	98 %	107.8	83.0	56.2	107.8	102.2	74.8
MÄR	97 %	107.9	74.9	58.2	107.7	101.4	74.0
APR	92 %	152.8	90.9	68.0	151.2	130.8	88.0
MAI	98 %	118.6	83.5	63.3	115.6	109.5	82.4
JUN	98 %	191.3	100.9	69.6	183.1	139.5	93.0
JUL	97 %	181.3	110.9	78.8	178.7	161.1	106.3
AUG	91 %	175.2	79.2	62.8	167.9	132.0	78.7
SEP	98 %	133.4	63.7	47.1	131.5	105.2	63.5
OKT	96 %	121.3	57.8	31.6	117.7	91.2	52.6
NOV	98 %	79.6	52.9	23.6	78.6	69.9	46.6
DEZ	98 %	69.8	60.8	29.6	69.4	64.6	57.6

Jahresmittelwert	2010	51.7
JPZ 98% TMW	2010	93.7
Jahresverfügbarkeit	2010	96 %
Überschreitungen über 180 µg/m³	2010	1
Überschreitungen über 180 µg/m³	2010	0

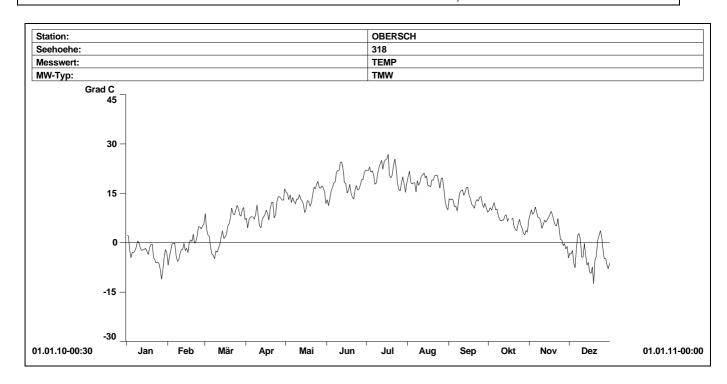


Temperaturverläufe (°C)

Eisenstadt

Monatshöchstwerte Temperatur	
Eisenstadt	
Datum	Messwert
01.JAN - 14:00	9.6
28.FEB - 15:00	14.6
26.MÄR - 14:00	21.6
30.APR - 16:00	25.9
24.MAI - 17:00	26.2
11.JUN - 16:00	34.4
17.JUL - 13:00	34.7
02.AUG - 17:00	29.9
15.SEP - 15:00	23.8
07.OKT - 13:00	17.5
05.NOV - 15:00	21.0
23.DEZ - 13:00	9.9

Monatstiefstwerte Temperatur		
Eisenstadt		
Datum	Messwert	
27.JAN - 08:00	-12.8	
16.FEB - 05:00	-6.8	
08.MÄR - 07:00	-6.5	
03.APR - 06:00	0.0	
16.MAI - 04:00	6.6	
02.JUN - 05:00	11.0	
30.JUL - 02:00	14.2	
31.AUG - 09:00	9.5	
21.SEP - 06:00	7.8	
28.OKT - 06:00	-1.2	
30.NOV - 21:00	-2.7	
19.DEZ - 04:00	-14.8	

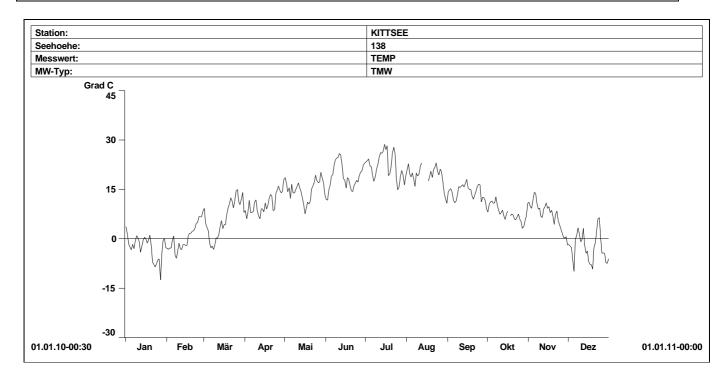


Oberschützen

Monatshöchstwerte Temperatur	
Oberschützen	
Datum	Messwert
01.JAN - 14:00	8.5
28.FEB - 14:00	14.0
21.MÄR - 14:00	18.5
30.APR - 16:00	25.5
25.MAI - 14:00	26.5
11.JUN - 14:00	33.2
17.JUL - 15:00	33.0
02.AUG - 15:00	29.1
15.SEP - 16:00	21.8
07.OKT - 13:00	15.2
05.NOV - 13:00	20.2
08.DEZ - 16:00	9.1

Monatstiefstwerte Temperatur	
Oberschützen	
Datum	Messwert
27.JAN - 08:00	-15.3
01.FEB - 05:00	-12.1
06.MÄR - 06:00	-10.1
03.APR - 05:00	-1.5
19.MAI - 05:00	4.3
24.JUN - 04:00	8.1
08.JUL - 03:00	9.3
31.AUG - 04:00	4.7
20.SEP - 06:00	4.0
28.OKT - 05:00	-3.4
30.NOV - 07:00	-9.9
19.DEZ - 06:00	-18.5

Oberschützen Jahresmittelwert 8,6°C



Kittsee

Monatshöchstwerte Temperatur		
Kittsee		
Datum	Messwert	
01.JAN - 14:00	6.2	
25.FEB - 15:00	14.4	
26.MÄR - 14:00	21.6	
30.APR - 15:00	25.1	
24.MAI - 14:00	28.3	
11.JUN - 14:00	32.8	
17.JUL - 15:00	34.5	
02.AUG - 15:00	29.5	
15.SEP - 16:00	23.4	
07.OKT - 15:00	16.5	
05.NOV - 12:00	20.8	
23.DEZ - 13:00	10.3	
17.JUL - 15:00 02.AUG - 15:00 15.SEP - 16:00 07.OKT - 15:00 05.NOV - 12:00	34.5 29.5 23.4 16.5 20.8	

Monatstiefstwerte Temperatur		
Kittsee		
Datum	Messwert	
27.JAN - 07:00	-15.0	
01.FEB - 24:00	-9.5	
08.MÄR - 05:00	-7.2	
03.APR - 06:00	-0.7	
16.MAI - 04:00	5.9	
02.JUN - 05:00	10.4	
08.JUL - 02:00	12.2	
31.AUG - 04:00	8.4	
30.SEP - 23:00	3.7	
28.OKT - 03:00	-2.2	
30.NOV - 18:00	-4.5	
05.DEZ - 07:00	-17.2	

Kittsee Jahresmittelwert 9,7°C

